Polymerization of (perfluoro-*n*-alkyl)acetylenes by WCl₆-Ph₄Sn and polymer properties

Kenji Tsuchihara, Toshio Masuda, and Toshinobu Higashimura

Department of Polymer Chemistry, Kyoto University, Kyoto, 606 Japan

SUMMARY

(Perfluoro-<u>n</u>-alkyl)acetylenes (HC=CR_f; $R_f = \underline{n}-C_6F_{13}$, $\underline{n}-C_4F_9$) polymerized with the WCl₆-Ph₄Sn catalyst to produce methanol-insoluble polymers in good yields. The intrinsic viscosities of the polymers (in C_6F_6) were ca. 0.05 dL/g, being relatively small. No large difference was observed between the polymerization in toluene (heterogeneous) and that in C_6F_6 (homogeneous). The main chain of the polymers was composed of alternating double bonds. These polymers were white solids soluble in C_6F_6 . The temperatures at which the weight loss of the polymers started were higher than 200°C, which indicates improved thermal stability as compared with the corresponding poly(1-alkynes).

INTRODUCTION

Fluorine-containing polymers such as poly(tetrafluoroethylene) are known to show unique properties such as water and oil repellency, thermal stability, and resistance to chemicals. Thus far several polymers have been obtained from fluorine-containing aromatic acetylenes by using groups 5 and 6 transition metal catalysts; e.g., poly(1-pentafluorophenyl-1alkynes) (insol.), 1 poly[o-(trifluoromethyl)phenylacetylene] (high MW), <math>2, 3 poly[1-ethynyl-5-(trifluoromethyl)naphthalene] (medium MW). 4

On the other hand, the polymerization of fluorine-containing aliphatic acetylenes is virtually restricted to a few examples as follows: polymerizations of HCECCF₃ with PdCl₂/DMF or <u>n</u>-BuLi⁵ and of CF₃CECCF₃ with $\binom{S}{KF, 6}$ both of which only produce insoluble polymers.

This note reports on the polymerization of (perfluoro-<u>n</u>-alkyl)acetylenes having relatively long perfluoroalkyl groups (HCECR_f; $R_f = \underline{n}-C_6F_{13}$, $\underline{n}-C_4F_9$). These monomers polymerized with WCl₆-Ph₄Sn catalyst to produce new polymers which are white, totally soluble in C_6F_6 , and more stable than the corresponding poly(1-alkynes).

EXPERIMENTAL

Monomers were offered by Japan Halon Co., Ltd.: $\text{HC}\equiv\text{C}-\underline{n}-\text{C}_6F_{13}$ bp 96°C/760mmHg, purity [gas chromatography (GC)] 99%; $\text{HC}\equiv\text{C}-\underline{n}-\text{C}_4F_9$ bp 47°C/760mmHg, purity (GC) 98%. W and Mo compounds and organometallic cocatalysts were commercially obtained, and used without further purification.

All the procedures for catalyst preparation and polymerization were

carried out in dry nitrogen. Monomer conversions were determined by GC, and yields of methanol-insoluble polymers were determined by gravimetry.

Intrinsic viscosities of polymers were measured in C_6F_6 at 30° C. Infrared (IR) and ultraviolet(UV)-visible spectra were recorded on Shimadzu IR435 and UV190 spectrophotometers, respectively. Thermogravimetric analysis (TGA) was performed with a Shimadzu 20B thermal analyzer (heating rate 10° C/min., in air). Other analyses were carried out as described elsewhere.⁷

RESULTS AND DISCUSSION

Polymerization of (Perfluoro-n-alkyl)acetylenes

Table I lists results for the polymerization of (perfluoro-nhexyl)acetylene. When polymerization was carried out with WCl6-PhaSn as catalyst in toluene solution, a methanol-insoluble polymer was obtained in ca. 50% yield. The methanol-soluble product was a mixture of linear oligomers and cyclotrimers. Apart from toluene as solvent, polymers could be obtained in CCl_4 and various fluorine-containing solvents. The polymer yields in these solvents, however, were 15 - 30%, being lower than that in toluene. The intrinsic viscosities of the polymers produced in toluene and CCl₂FCClF₂ were in the range of ca. 0.05 - 0.08 dL/g, indicating that the molecular weights of the polymers are rather low like poly(1-alkynes). The intrinsic viscosities of the polymers did not greatly change with the kind of polymerization solvents. It is noted that no substantial difference in the yield and molecular weight of polymer is observable between toluene or CCl4 (non-solvents of the polymer) and fluorine-containing solvents (relatively good solvents of

Catalyst	Solvent	Conversion	Polymer ^b	
		- 8	Yield,%	[ŋ],dL/g ^C
WCl_6-Ph_4Sn	toluene	72	52	0.047
WCl ₆ -Ph ₄ Sn	CC14	100	30	
WCl6-Ph4Sn	C ₆ F ₆	80	30	
WCl6-Ph4Sn	C ₆ H ₄ - <u>m</u> -(CF ₃) ₂	25	15	
WCl6-Ph4Sn	CCl2FCClF2	100	30	0.080
WC16	toluene	24	0	
w(co) ₆ -hv ^d	CCl ₄	0	0	
$MoCl_5-Ph_4Sn$	toluene	0	0	

Table I Polymerization of (Perfluoro-<u>n</u>-hexyl)acetylene^a

^a Polymerized at 30[°]C for 24 h after aging catalyst solutions b at 30[°]C for 15 min.; [M]o = 0.50 M, [Cat] = [Cocat] = 20 mM.

Methanol-insoluble product.

Measured in C_6F_6 at 30°C.

Polymerized at 30° C after irradiation with UV light for 1 h; [M]o = 0.50 M, [Cat] = 10 mM.

Polymerization of (Periluoro- <u>n</u> -butyl)acetylene						
Catalyst	Solvent	Conversion	Polymer ^b			
		8	Yield,%	[η],dL/g ^C		
WCl6-Ph4Sn	toluene	100	86	0.050		
WCl ₆ -Ph ₄ Sn	C ₆ F ₆	100	82	0.059		
WCl ₆ -Ph ₄ Sn	$CC1_2FCC1F_2$	100	76	0.062		
w(co) ₆ -hv ^d	CC14	0	0			
$MoCl_5$ -Ph_4Sn	toluene	8	0			

Table II Polymerization of (Perfluoro-<u>n</u>-butyl)acetylene^a

^a Polymerized at 30°C for 24 h after aging catalyst solutions at 30°C for 15 min.; [M]o = 0.50 M, [Cat] = [Cocat] = 30 mM. ^b Methanol-insoluble product.

 $^{\rm C}_{\rm d}$ Measured in C₆F₆ at 30 °C.

d Polymerized at 30°C after irradiation with UV light for 1 h; [M]o = 0.50 M, [Cat] = 10 mM.

the polymer). When WCl₆ alone was used as catalyst, or when <u>n</u>-Bu₄Sn, Ph₃SiH, Et₃SiH, Ph₃Bi, and Ph₃Sb were added as cocatalysts to WCl₆, no methanol-insoluble polymer was obtained. No reaction occurred with $W(CO)_6-hV$ or MoCl₅-Ph₄Sn. Ziegler-catalysts such as Fe(acac)₃-3Et₃Al and Ti(OBu)₄-4Et₃Al produced only methanol-soluble oligomers. Thus it has turned out that the effective catalyst for this monomer is restricted to WCl₆-Ph₄Sn.

Table II gives data for the polymerization of $(perfluoro-\underline{n}-butyl)$ acetylene, a homologue with a shorter perfluoroalkyl group. When the WCl₆-Ph₄Sn catalyst was used in conjunction with the solvents shown in the table, monomer was completely consumed and methanol-insoluble polymers were obtained in high yields around 80%. The intrinsic viscosities of the produced polymers were 0.05 - 0.06 dL/g, no large difference being observed irrespective of the kind of solvents.

Copolymerization of (perfluoro-<u>n</u>-hexyl)acetylene with 1-octyne by WCl₆-Ph₄Sn catalyst was attempted (polymerization conditions: in toluene, 30° C, 24 h, $[M_1]_0 = [M_2]_0 = 0.25$ M, [Cat] = 20 mM). Consequently, 1-octyne was completely converted within 1 h, while (perfluoro-<u>n</u>-hexyl)-acetylene was not consumed at all even after 24 h. Further, 1-(perfluoro-<u>n</u>-hexyl)-1-pentyne (<u>n</u>-C₆F₁₃C=C-<u>n</u>-C₃H₇) was not consumed at all in the polymerization by MoCl₅-<u>n</u>-Bu₄Sn catalyst⁸ (polymerization conditions: in toluene, 30° C, 24 h, [M]₀ = 0.25 M, [Cat] = 20 mM); it gives striking contrast to the fact that internal alkynes polymerize well in the presence of MoCl₅- and/or WCl₆-based catalysts.⁹ These results suggest that the coordinating ability of fluorine-containing acetylenes are inferior to that of the corresponding alighatic acetylenes.

Structure and Properties of Polymers

The structure and properties of the present polymers did not essentially differ with polymerization conditions. Hence, the data for the polymer samples prepared with WCl_6 -Ph₄Sn in toluene will be described below.

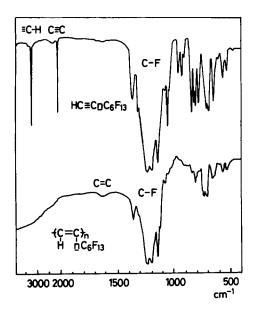
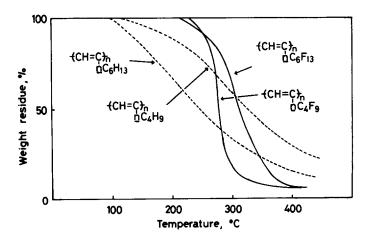


Figure 1. IR spectra of (perfluoron-hexyl)acetylene and its polymer (KBr pellet).

The elemental analysis values for the polymers agreed fairly well with the values calculated for the addition polymerization products (e.g., Anal Calcd for $(C_{\rm g}H_{1}F_{13})_{\rm n}$: C, 27.91%; H, 0.30%; F, 71.80% Found: C, 28.30%; H, 0.45%; F, 70.21%).



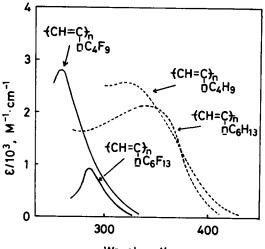

Figure 2. TGA curves of poly[(perfluoro-<u>n</u>-alkyl)acetylenes] and poly(1-alkynes) (heating rate 10° C/min, in air).

Figure 1 exhibits the IR spectra of (perfluoro-n-hexyl)acetylene and polymer. its The spectrum of the polymer shows no absorptions characteristic of the EC-H and CEC bonds which are clearly seen in the spectrum of the monomer. Instead, an absorption due to the C=C bond is observed at 1620 cm^{-1} in the polymer. The strong complicated band at 1350 - 1000 cm^{-1} is due to C-F stretching. These analytical and IR spectral data indicates that the polymer has alternating double bonds along the main chain as shown in Figure 1.

The poly[(perfluoro-<u>n</u>-alkyl)acetylenes] obtained in the present study are white solids. These polymers completely dissolved in C_6F_6 , and were partly soluble in other fluorine-containing solvents such as CCl_2FCClF_2 , but did not dissolve in hydrocarbons and ethers at all. Poly(1-alkynes), corresponding hydrocarbon polyacetylenes, are soluble in hydrocarbon solvents such as toluene. Thus it is evident that polymer solubility greatly differs owing to the presence or absence of the fluorine atoms.

TGA curves of poly[(perfluoro-<u>n</u>-alkyl)acetylenes] in air are shown in Figure 2. Poly(1-alkynes) have poor thermal stability; their weight loss starts below 150°C in TGA.⁹ In contrast, the temperatures at which these fluorine-containing polymers started to lose weight were fairly high (220 - 230°C), indicating enhanced thermal stability. It can be said that the present polymers have fairly good thermal stability among monosubstituted acetylene polymers because of bulkiness of the side chain and/or lack of H atom in the perfluoroalkyl groups.⁹

As shown in Figure 3, the UV-visible spectra of poly[(perfluoron-alkyl)acetylenes] exhibited an absorption maximum at around 250 - 300nm, and no absorption above 340 nm. These absorption bands are in ashorter wavelength region than are those of the corresponding<math>poly(1-alkynes). This can be explained in terms that the bulky perfluoroalkyl groups twist the polymer backbone to reduce the extent of conjugation. These spectra correspond well with the fact that the present

Wavelength, nm

Figure 3. UV-visible spectra of poly[(perfluoro-n-alkyl)acetylenes] and poly(1-alkynes) (in C_6F_6 or CCl_4).

polymers are white, whereas the poly(1-alkynes) are yellow to orange. The absorption of the present polymers weakened with increasing length of perfluoroalkyl group.

The electrical conductivities of poly[(perfluoro-n-alkyl)acetylenes] were in the order of $10^{-17} \text{ s} \cdot \text{cm}^{-1}$, indicative of typical electrical insulators.

ACKNOWLEDGMENT

The authors wish to thank Japan Halon Co., Ltd. for the donation of monomers. Thanks are also due to the Ministry of Education, Science and Culture of Japan for financial support (Grant-in Aid for Scientific Research on Priority Areas: Macromolecular Complexes: 63612005)

REFERENCES

- Yoshimura, T., Masuda, T., Higashimura, T., Ishihara, T., J. Polym. Sci., Part A, Polym. Chem., 24, 3569 (1986).
- 2. Muramatsu, H., Ueda, T., Ito, K., Macromolecules, 18, 1634 (1985).
- Masuda, T., Hamano, T., Higashimura, T., Ueda, T., Muramatsu, H., Macromolecules, 21, 281 (1988).
- Okano, T., Ito, K., Kodaira, K., Nishida, M., Ueda, T., Muramatsu, H., J. Fluorine Chem., 38, 139 (1988).
- 5. Rubner, M., Deits, W., J. Polym. Sci., Part A, Polym. Chem., 20, 2043 (1982).
- 6. Jackson, J.A., J. Polym. Sci., Part A, Polym. Chem., 10, 2935 (1972).
- Masuda, T., Tajima, H., Yoshimura, T., Higashimura, T., Macromolecules, 20, 1467 (1987).
- 8. Masuda, T., Yoshida, T., Higashimura, T., Ishihara, T., unpublished data.
- 9. Masuda, T., Higashimura, T., Adv. Polym. Sci., 81, 121 (1986).

Accepted August 18, 1988 S

348